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Abstract—In this paper, we propose a novel sensor validation
architecture, which performs sensor fault detection, isolation
and accommodation (SFDIA). More specifically, a machine-
learning based architecture is presented to detect faults in sensors
measurements within the system, identify the faulty ones and
replace them with estimated values. In our proposed architecture,
sensor estimators based on neural networks are constructed for
each sensor node in order to accommodate faulty measurements
along with a classifier to determine the failure detection and
isolation. Finally, numerical results are presented to confirm the
effectiveness of the proposed architecture on a publicly-available
air quality (AQ) chemical multi-sensor data-set.

Index Terms—Fault tolerance, neural networks, sensors.

I. INTRODUCTION

With the new wave of digitalization, digital twins are at
the core of the development process within Industry 4.0.
Accordingly, sensors constitute the driving force for the
accomplishment of this concept [1]. However, sensors are
prone to failure and faulty data may negatively affect func-
tionalities of the monitored system. Accordingly, SFDIA is
a crucial practice since it can hinder faulty sensors from
leading systems to catastrophic consequences. In this context,
numerous approaches have been developed in the literature
related to the use of analytical redundancy techniques for
sensor fault detection and isolation. Such techniques can be
mainly categorized into two groups: model-based methods and
data-driven (or more generally model-free) methods.

The most widely used model-based methods comprise
(multiple-model) Kalman filter [2], [3] and observer-based
[4] approaches. Despite their appeal, model-based methods
require an accurate mathematical model of the system, whose
constitutive parameters are difficult to apply in the presence
of nonlinearities. On the other hand, data-driven methods for
SFDIA schemes have attracted significant attention by the
scientific community due their ease of implementation and
capabilities to capture nonlinear behavior by learning from
historical data [5]–[9]. Data-driven methods include neural
networks (NNs) and other machine-learning approaches [6],
[8]–[10], hidden Markov models [11], fuzzy logic [12] and
principal component analysis [13], whose successful applica-
tion has been demonstrated to manifold systems. These com-
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Fig. 1: The proposed system architecture for SFDIA.

prise diesel-engines, gas-turbines, wireless sensor networks
and air-crafts.

In this work, we propose a machine-learning-based frame-
work for sensor validation with different applications. The pro-
posed architecture takes advantage of reliable and unreliable
sensors’ measurements as well as their temporal correlation.
Synthetically-generated weak bias faults were added to a data-
set of a chemical multi-sensor device to evaluate the presented
SFDIA architecture. The benefits of the proposed approach are
the flexibility in terms of the application domain, the capability
to promptly deal with weak faults and (not explored here) with
simultaneous faults of multiple sensors.

The outline of this manuscript is the following. Sec. II
describes the proposed machine-learning based SFDIA archi-
tecture. The description of the considered multi-sensor data-
set used in this work and numerical results are provided in
Sec. III. Some final remarks are given in Sec. IV.

Notation – Lower-case bold letters and bold numbers denote
vectors and (·)T , denotes transpose operator.

II. PROPOSED SFDIA ARCHITECTURE

In this section, we briefly describe the three-layer system
architecture (illustrated in Fig. 1). More specifically, we con-
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sider a system monitored via (NR + NU ) different sensors.
Sensors measurements constitute the input of the proposed
SFDIA system, where measurements are divided into two
sets: NR reliable sensors (set SR), which represent supportive
data, and NU unreliable sensors (set SU ), which are prone to
failure. Still, we underline that the present architecture does
not necessarily require the presence of reliable sensors.

A. Estimation Layer

According to Fig. 1, input sensors data enter the first
layer with NU independent sensor estimators, namely virtual
sensors. Each virtual sensor receives all sensors’ data except
for the sensor under estimation from time instant n to n−m
(i.e. using a sliding window of length m + 1) as input and
estimates the measurement of the sensor under estimation at
time n as output. Outputs of the estimators are exerted to
replace the isolated faulty data by the SFDIA system at the last
layer. A classic multilayer perceptron (MLP) [7] architecture
is considered for each virtual-sensor implementation.

B. Error Computation

The estimated measurement from each virtual sensor is then
subtracted from the respective unreliable sensor measurement
in the second layer to obtain NU error signals, collected
within e(n). Error signals measure the dissimilarity between
the normal and faulty status of unreliable sensors, wherein the
case of perfect estimation and no faulty sensors e(n) = 0.

C. Classification Layer

The last stage of the proposed architecture consists of a
classifier which aims at (i) detecting and (ii) identifying faulty
measurements from the set of unreliable sensors SU . In detail,
the classification stage accepts the error vectors inputs at
time instants n to n − k, namely e(n), . . . , e(n − k) (i.e. a
sliding window of length k + 1). The error vectors are used
by the classifier as a metric for fault detection and isolation.
Accordingly, the decision vector output is in the format
d(n) = [d0(n), d1(n), . . . , dNU

(n)]T (with d(n) ∈ [0, 1]).
Therein, {d0(n) = 1} denotes the event that no sensor failure
is present, while other decision elements {di(n) = 1} with
i = 1, . . . , NU indicate failure on the ith unreliable sensor.

More specifically, the classifier is made of a two-layer
MLP with a softmax output activation function and NU + 1
output nodes. The classifier softmax output gives a decision
vector representing the probability distributions of the vector
of potential outcomes. Thus, decision element with the highest
probability represents the occurred event

im = argmax
i∈0,...,NU

di(n) ,

where im points to the largest element of the decision vector
(i.e. it represents the event with the highest probability of
occurrence). Finally, if an unreliable sensor is declared in
failure, its measurements are replaced with the estimated
values from the corresponding virtual sensor.

Briefly, im = 0 vs. im 6= 0 represents the detection
task, being equivalent to “no fault detected” {d0(n) = 1}

Fig. 2: correlation matrix of sensor pairs for AQ data-set.

vs. “fault detected” {d0(n) = 0}. In the case im 6= 0, the
specific values of im performs the isolation task and replacing
faulty sensor measurements with corresponding virtual sensor
estimates employs the accommodation task.

III. DATA-SET DESCRIPTION AND NUMERICAL RESULTS

The proposed architecture is applied to an air quality (AQ)
data-set with 5 metal oxide chemical sensors embedded in
an AQ chemical multi-sensor device installed on the field
in an Italian city [14]. Hourly averaged measurements of
the multi-sensor device consisting of carbon monoxide (CO),
Non-Metanic Hydrocarbons (NMH), Nitrogen Oxides (NOx),
Nitrogen Dioxide (NO2) and ozone (O3) gas concentrations
are considered as unreliable set. Moreover, measurements of
temperature (Temp) and humidity (Hu) in the AQ data-set are
used within reliable set in this study. Accordingly, we have:

SU = {CO,NMH,NOx,NO2,O3} (NU = 5)

SR = {Temp,Hu} (NR = 2)

Measurements of both sets are normalized via min-max nor-
malization within the range [0, 1]. In addition, we dropped
missed data before processing the data-set.

Our experimental analysis is carried out by dividing the
data-set into a training set accounting for 85% of the first
part of data-set and a test set accounting for the remaining
15%. The holdout validation method is used to prevent over-
fitting to some extent. Synthetically-generated bias faults are
added to the AQ data set to verify the proposed architec-
ture performance. To represent weak faults, we considered
positive and negative additive bias faults. The bias absolute
level ranges within [20, 40]% of each sensor measurements’
variation domain on the train set. Five MLP virtual sensors
(estimators) with one single hidden layer (made of 10 neurons)
are trained to provide estimation of the NU = 5 unreliable
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(a) synthetically generated faults

(b) sensors’ outputs

Fig. 3: Output of different stages of the proposed SFDIA
architecture for bias faults over one week of the test set.

metal oxide chemical sensors. Differently, two hidden layers
with 15 neurons per layer are considered for the classifier.
Also, the size of the sliding window is assumed to span 10
samples for both the estimators and the classifier (i.e. m = 10
and k = 10).

Fig. 2 shows the correlation coefficient between different
sensor pairs. Indeed, a higher correlation between sensor pairs
would lead to more accurate estimators (viz. virtual sensors) in
the first layer. As a result, this would imply a higher-precision
classifier, since error signals represent difference in actual and
virtual sensors’ measurements. Results highlight significant

Fig. 4: Normalized confusion matrix for all classes during the
test period. Numbers are in percent.

dependencies among different pairs, which indicates the fea-
sibility of our data-driven SFDIA.

The output of several parts of SFDIA architecture for
one week of test set is shown in Fig. 3. More specifically,
Fig. 3(a) monitors the faults on different sensors where the
proposed architecture successfully detects and identifies all
faults without delay in the system (dashed line) with only two
false declaration samples (false positive) in the first and fifth
days. As can be seen in Fig. 3(b), after fault identification,
system accommodates isolated faulty data with its estimation
to ensure the fault-free performance of the system.

Finally, the (normalized) confusion matrix on the test set
is presented in Fig. 4. The confusion matrix shows excellent
accuracy of the proposed architecture, i.e. classification rate
about 96.5%. All classes show high precision over 90%, with
the lowest precision exhibited on O3 and NOx sensors with
values 93.75% and 93.64%, respectively.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

This manuscript presented a machine-learning based archi-
tecture for SFDIA scheme in real-time operation. MLP-based
virtual sensors provided appropriate estimates of unreliable
sensors to replace corresponding corupted measurements in
presence of faults, while an MLP-based classifier was re-
sponsible for detection and isolation of faults. The proposed
architecture is validated by real-world data from AQ mon-
itoring sensors, and results illustrate the prompt detection,
isolation and accommodation of sensors’ failures with less
than 2.6% of faults on average remained undetected on the test
set. Future directions will include the use of deep networks
for the modules of the proposed SFDIA and type-of-fault
classification.
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